Method for Estimating Emissions Reductions for Composting April 21, 2016 ### Life-cycle Analysis - ARB in collaboration with CalRecycle have updated the compost emission reduction factor (CERF) - The purpose of this report is to explain a life-cycle method to quantify the California-specific GHG emission reductions from using compost and the GHG emissions associated with compost management #### **GHG** Emissions and Benefits This method evaluates the GHG emissions of composting and GHG emissions reduction benefits associated with the agricultural use of composting endproducts, as compared to a baseline scenario of waste landfilling with gas collection Baseline Scenario Waste Landfilling and Gas Collection Alternative Scenario Composting and Agricultural Use #### **GHG** Emissions and Benefits - The GHG emissions considered are: - transportation - process emissions - fugitive CH₄ and N₂O emissions - The GHG emissions reduction benefits considered are: - avoided methane emissions from landfilling - reduced soil erosion - decrease in fertilizer and herbicide use ## Compost Emission Reduction Factor (CERF) • CERF was determined for food waste, yard trimmings, and mixed organics • CERF = $$\mathbf{B}_{total} - \mathbf{E}_{total}$$ - **B**_{total} = total emission reduction **benefit** due to application of compost - E_{total} = total emissions due to composting ## Composting Emissions (E_{total}) • $$\mathbf{E}_{\text{total}} = \mathbf{T}_{e} + \mathbf{P}_{e} + \mathbf{F}_{e}$$ - E_{total} = total emission from composting - T_e = net additional transportation emissions from composting as compared to landfilling - P_e = Net additional process emissions from composting as compared to landfilling - F_e = fugitive emissions from composting # Composting Emissions (E_{total}) | Emission Type | Emission (MTCO ₂ E/ton of feedstock) | |---|---| | Transportation emissions (T _e) | 0 | | Process emissions (P _e) | 0 | | Fugitive CH ₄ emissions (F _e) | 0.049 | | Fugitive N ₂ O emissions (F _e) | 0.021 | | Total | 0.070 | $$E_{total} = T_e + P_e + F_e$$ ## Compost Emission Reductions (B_{total}) - $\mathbf{B_{total}} = \mathsf{ALF_b} + ((\mathbf{E_b} + \mathbf{F_b} + \mathbf{H_b}) * \mathbf{C_{use}})$ - B_{total} = total emission reduction benefit due to compost use - ALF_b = emission reductions associated with the avoidance of methane emissions at landfills - E_b = emission reduction associated with decreased soil erosion - F_h = factor to account for reduced fertilizer use - H_b = factor to account for reduced herbicide use - C_{use} = conversion factor to convert from tons to compost to tons of feedstock ## Compost Emission Reductions (B_{total}) | Emission reduction type | Emission
reduction
(MTCO ₂ E/ton of
feedstock) | Conversion factor (C _{use}) | Final emission reduction by waste type (MTCO ₂ E/ton of feedstock) | | | |--|--|---------------------------------------|---|-------------------|-------------------| | | | | Food
waste | Yard
trimmings | Mixed
Organics | | Avoided landfill emissions (ALF _b) | N/A | N/A | 0.39 | 0.21 | 0.33 | | Decreased soil erosion (E _b) | 0.25 | 0.58 | 0.15 | 0.15 | 0.15 | | Decreased fertilizer use (F _b) | 0.26 | 0.58 | 0.15 | 0.15 | 0.15 | | Decreased herbicide use (H _b) | 0.0 | 0.58 | 0.0 | 0.0 | 0.0 | | Total | N/A | N/A | 0.69 | 0.51 | 0.63 | $$\mathbf{B_{total}} = \mathbf{ALF_b} + ((\mathbf{E_b} + \mathbf{F_b} + \mathbf{H_b}) * \mathbf{C_{use}})$$ ### Final Compost Emission Reduction Factor | Waste Type | Composting
Benefits (B _{total}) | , · · · · · · · · · · · · · · · · · · · | Final CERF
(MTCO ₂ E/ton
waste input) | |----------------|--|---|--| | Food waste | 0.69 | 0.07 | 0.62 | | Yard trimmings | 0.51 | 0.07 | 0.44 | | Mixed Organics | 0.63 | 0.07 | 0.56 | $$CERF = B_{total} - E_{total}$$ ### Variability Analysis - Uncertainty due to: - Variability in the compost processing and physical soil properties - Lack of scientific understanding of emissions pathways for landfills and compost piles - Absence of literature articles - Reliance on non-California specific study locations and default assumptions - Erosion and water use results were extrapolated from lab-scale experiments instead of macro scale field methods - Herbicide results were based on only one study, and pesticide life-cycle information was used as a proxy #### **Public Comments** - The draft document is available for public comment through May 6, 2016 - Comments can be sent: - via email to Ms. Mei Fong at mei.fong@arb.ca.gov - mailed to Mr. Robert Krieger, Emissions Assessment Branch, P.O. Box 2815, Sacramento, CA 95812 - Visit the Waste Management Sector website at http://www.arb.ca.gov/cc/waste/waste.htm for more information #### Staff Recommendation - Staff recommends that Task Force send a comment letter to ARB regarding: - Process emissions from composting - Transportation emissions from composting and landfilling - Total composting emissions calculated - Reduced fertilizer use emissions reduction benefit from compost application - Laboratory scale experiment versus macro scale field studies - Large uncertainty in factors - Emissions reduction benefits from water use